Abstract

The Slate Islands impact structure is the eroded remnant of a ∼30–32 km-diameter complex impact structure located in northern Lake Superior, Ontario, Canada. Target rocks are Archean supracrustal and igneous rocks and Proterozoic metavolcanics, metasediments, and diabase. A wide variety of breccias occurs on the islands, many of which contain fragments exhibiting shock metamorphic features. Aphanitic, narrow and inclusion-poor pseudotachylite veins, commonly with more or less parallel boundaries and apophyses branching off them, represent the earlist breccias formed during the compression stage of the impact process. Coarse-grained, polymictic clastic matrix breccias form small to very large, inclusion-rich dikes and irregularly shaped bodies that may contain altered glass fragments. These breccias have sharp contacts with their host rocks and include a wide range of fragment types some of which were transported over minimum distances of ∼2 km away from the center of the structure. They cut across pseudotachylite veins and contain inclusions of them. Field and petrographic evidence indicate that these polymictic breccias formed predominantly during the excavation and central uplift stages of the impact process. Monomictic breccias, characterized by angular fragments and transitional contacts with their host rocks, occur in parautochthonous target rocks, mainly on the outlying islands of the Slate Islands archipelago. A few contain fragmented and disrupted, coarse-grained, polymictic clastic matrix breccia dikes. This is an indication that at least some of these monomictic breccias formed late in the impact process and that they are probably related to a late crater modification stage. A small number of relatively large occurrences of glass-poor, suevitic breccias occur at the flanks of the central uplift and along the inner flank of the outer ring of the Slate Islands complex crater. A coarse, glass-free, allogenic breccia, containing shatter-coned fragments derived from Proterozoic target rocks (upper target strata), observed at two locations may be analogous to the ‘Bunte Breccia’ of the Ries crater in Germany. At one of these locations, this breccia lies close to a crater suevite deposit. At the other, it overlies parautochthonous, monomictic breccia. The Slate Islands impact breccias are superbly exposed, much better than breccias in most other terrestrial impact structures. Observations, including those indicative of multiple and sequential processes, provide insight on how impact breccias form and how they relate to the various phases of the impact process. Eventually they will lead to an improved understanding of planetary impact processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call