Abstract

Microwave driving is a ubiquitous technique for superconducting qubits, but the dressed states description based on the conventionally used perturbation theory cannot fully capture the dynamics in the strong driving limit. Comprehensive studies beyond these approximations applicable to transmon-based circuit quantum electrodynamics (QED) systems are unfortunately rare, as the relevant works have been mainly limited to single-mode or two-state systems. In this work, we investigate a microwave-dressed transmon coupled to a single quantized mode over a wide range of driving parameters. We reveal that the interaction between the transmon and resonator as well as the properties of each mode is significantly renormalized in the strong driving limit. Unlike previous theoretical works, we establish a nonrecursive and non-Floquet theory beyond the perturbative regimes, which excellently quantifies the experiments. This work expands our fundamental understanding of dressed cavity QED-like systems beyond the conventional approximations. Our work will also contribute to fast quantum gate implementation, qubit parameter engineering, and fundamental studies on driven nonlinear systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.