Abstract

Molecular crystals are increasingly being used for advanced applications, ranging from pharmaceutics to organic electronics, with their utility dictated by a combination of their three-dimensional structures and molecular dynamics-with anharmonicity in the low-frequency vibrations crucial to numerous bulk phenomena. Through the use of temperature-dependent x-ray diffraction and terahertz time-domain spectroscopy, the structures and dynamics of a pair of isomeric molecular crystals exhibiting nearly free rotation of a CF_{3} functional group at ambient conditions are fully characterized. Using a recently developed solid-state anharmonic vibrational correction, and applying it to a molecular crystal for the first time, the temperature-dependent spatial displacements of atoms along particular terahertz modes are obtained, and are found to be in excellent agreement with the experimental observations, including the assignment of a previously unexplained absorption feature in the low-frequency spectrum of one of the solids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call