Abstract

Members of the integrase family site-specific recombinases (also called the tyrosine family) bring about recombination in two steps by exchanging pairs of single strands at a time. The product of the first exchange reaction is a four-way DNA junction, the Holliday intermediate. The conformational dynamics by which the recombination complex “isomerizes” from the Holliday-forming to the Holliday-resolving mode are not well understood. Experiments with the lambda Int and Escherichia coli XerC/XerD systems imply that the strand configurations at the branch point of the protein-free junction dictate the resolution mode in the protein-bound junction. We have examined the question of strand bias during resolution for the Flp system by using a series of synthetic Holliday junctions that are conformationally constrained by local sequences or by strand tethering. We have not observed a strong resolution bias in favor of the strands designed to assume the “crossed” configuration within the unbound junction. The resolution patterns with antiparallel junctions in a variety of substrate contexts reveal either parity in strand choice, or only modest disparity. On the other hand, the highly biased resolutions observed in the case of tethered parallel junctions can be explained by the non-equivalence in protein occupancy of the DNA arms of these substrates and/or inefficient conversion of cleavage events to recombinants at the tethered ends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.