Abstract

ObjectiveThis study investigates the efficacy of using a long-acting insulin analog, along with the infusion of regular insulin, in achieving appropriate glycemic control and correcting lactic acidosis in patients post orthotopic heart transplant who demonstrate severe lactic acidosis and insulin resistance.MethodsThis was a retrospective study of two cohorts (IRB FLA 20-003) of patients post orthotopic heart transplant with severe lactic acidosis and insulin resistance who were admitted to a tertiary intensive care unit and treated with (group 1) or without long-acting insulin analog (group 2) within the first 24 h of admission to the intensive care unit. Insulin resistance is defined as the requirement for intravenous regular insulin infusion of more than 20 units/h without the ability to achieve appropriate serum glucose level (120–180 mg /dL). Severe lactic acidosis is defined as arterial lactic acid of more than 10 mmol/L. The following parameters were investigated: time to correct lactic acidosis, duration of postoperative mechanical ventilation, the need for periprocedural mechanical circulatory support, and 28-day mortality.ResultsThe 28-day mortality was zero in both groups. Two patients required periprocedural mechanical support in group one, and ten patients required mechanical support in group two (RR = 0.224, 95%, confidence interval 0.052–0.95, Z = 2.029, p = 0.042). Three patients required tracheostomy in group one, and four patients required tracheostomy in group two (RR 0.84, 95 confidence interval 0.20–3.48, Z = 0.23, P = 0.81). Wilcoxon rank-sum test was used to compare time to correct lactic acidosis, with lactic acid resolution being faster in group one (X¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\overline{X}$$\\end{document}1 = 19.7 h, SD ± 12.6 h X¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\overline{X}$$\\end{document}2 = 29.3 h, SD ± 19.6 h, Z-value − 2.02, p-value 0.043). The duration of mechanical ventilation was less in group one (X¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\overline{X}$$\\end{document}1 = 29 h, SD ± 12.7 h, X¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\overline{X}$$\\end{document}2 = 55.1 h, SD ± 44.5 h, Z-value: − 1.92, p-value 0.05).ConclusionAdministration of low-dose long-acting insulin glargine led to the resolution of the lactic acidosis, insulin resistance, and decreased requirements for pressor and inotropic support, which led to decreased need for mechanical circulatory support.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call