Abstract
The Laser Beam Powder Bed Fusion (PBF-LB) category of Additive Manufacturing (AM) is currently receiving much attention for computational process modelling. Major challenges exist in how to reconcile resolution, energy and time in a real build, with the practical limitations of resolution (layer height and mesh resolution), energy (heat format and magnitude) and time (heating and cooling step times) in the computational space. A novel thermomechanical PBF-LB process model including an efficient powder-interface heat loss mechanism was developed. The effect of variations in layer height (layer scaling), energy and time on the temperature and stress evolution was investigated. The influence of heating step time and cooling step time was characterised and the recommended ratio of element size to layer scaling was presented, based on a macroscale 2D model. The layer scaling method was effective when scaling up to 4 times the layer thickness and appropriately also scaling the cooling step time. This research provides guidelines and a framework for layer scaling for finite element modelling of the PBF-LB process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have