Abstract

Dissipative Particle Dynamics (DPD) simulations were performed to investigate resolution or "coarse graining" effects on the simulation results. Fluid flow through a periodic array of spheres has been studied as a model for fluid filtration into a porous medium. In our model system, it appears that quantitatively correct results for the dimensionless drag can be obtained for relatively small system sizes. For higher solid volume fractions, it is necessary to increase the system size to avoid finite size and resolution effects. Simulations of colloidal spheres suspended in a DPD fluid show effective attraction between the large colloid particles, causing depletion aggregation. This effect may be expected as a consequence of the coarse-grained nature of the DPD fluid. By imposing a steady shear rate the aggregation can be suppressed. The results show that for dilute suspensions, the Brownian noise in the particle interactions causes an effective colloid polydispersity, which suppresses aggregation effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.