Abstract

Dissipative particle dynamics (DPD) is a recently developed model for computing complex fluid flows at mesoscopic scales. This article provides a novel DPD simulation of complex microfluidic devices involving the momentum exchange between a body moving with a prescribed law of motion and the surrounding fluid. To this purpose, a DPD computational method is developed and equipped with an elastic collision model between the moving body and the DPD fluid particles surrounding it. The method is first validated versus well known theoretical, numerical, and experimental results, providing a sensitivity analysis of the dependence of continuum-flow properties on DPD parameters, as well as verifying its reliability for well known continuum-flow test cases. The method is then applied to its main goal, namely, the simulation of the flow driven by a peristaltic micropump, constructed by assembling several colloidal spheres. The DPD fluid model provides quite accurate results with respect to the experimental data and gives a detailed description of local flow properties. It is found that a careful choice of the DPD parameters is needed to avoid spurious compressibility effects and to match the real fluid characteristics; furthermore, due to the very coarse graining used in the present simulation, the thermal kinetic energy of the DPD particles needs to be reduced, in order to correctly evaluate their displacement, which is determined mainly by the momentum driving the flow. Finally, thanks to such a very coarse graining, the proposed DPD method provides an accurate prediction of local mesoscale flow properties with a dramatic reduction of the computational cost with respect to molecular dynamics simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call