Abstract

When an electrostatic probe is used to measure the surface charge on an insulating plate of constant thickness, the measuring system is regarded a shift-invariant system and the relation between the surface charge density and the probe output can be treated in the spatial frequency domain. The distribution of the surface charge density on an insulating plate just after occurrence of a surface discharge is measured by a Pockels probe, which is regarded as a kind of electrostatic probe without the guard electrode, and restored by Wiener inverse filter. The performance of a Pockels probe and a conventional electrostatic probe are compared quantitatively in terms of the spatial resolution. In the case that the measured object is 3 mm thickness PMMA plate and is charged up to 10 nC/cm/sup 2/ in atmospheric air, it is estimated that the spatial resolution of the Pockels probe with 0.2 mm gap is 1.5 mm and that of the conventional electrostatic probe with the grounded guard electrode with 3 mm gap is 2.2 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.