Abstract

Transport experiments on the two-dimensional electron gas (2DEG) confined into a semiconductor quantum well and subjected to a quantizing magnetic field have uncovered a rich variety of uniform and nonuniform phases such as the Laughlin liquids, the Wigner, bubble and Skyrme crystals and the quantum Hall stripe state. Optically pumped nuclear magnetic resonance (OP-NMR) has also been extremely useful in studying the magnetization and dynamics of electron solids with exotic spin textures such as the Skyrme crystal. Recently, it has been demonstrated that a related technique, resistively-detected nuclear magnetic resonance (RD-NMR), could be a good tool to study the topography of the electron solids in the fractional and integer quantum Hall regimes. In this work, we compute theoretically the RD-NMR line shapes of various crystal phases of the 2DEG and study the relation between their spin density and texture and their NMR spectra. This allows us to evaluate the ability of the RD-NMR to discriminate between the various types of crystal states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.