Abstract

Resistive random access memory (ReRAM) devices powered by piezoelectric nanogenerators (NGs) have been investigated for their application to future implantable biomedical devices. Biocompatible (Na0.5K0.5)NbO3 (NKN) films that are grown at 300 °C on TiN/SiO2/Si and flexible TiN/Polyimide (TiN‐PI) substrates are used for ReRAM and NGs, respectively. These NKN films have an amorphous phase containing NKN nanocrystals with a size of 5.0 nm. NKN ReRAM devices exhibit typical bipolar switching behavior that can be explained by the formation and rupture of oxygen‐vacancy filaments. They have good ReRAM properties such as a large ratio of RHRS to RLRS as well as high reliability. The NKN film grown on flexible TiN‐PI substrate exhibits a high piezoelectric strain constant of 50 pm V−1. The NKN NG has a large open‐circuit output voltage of 2.0 V and a short‐circuit output current of 40 nA, which are sufficient to drive NKN ReRAM devices. Stable switching properties with a large ON/OFF ratio of 102 are obtained from NKN ReRAM driven by NKN NG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.