Abstract

The effects of C60 incorporated in polymannose‐based resistive switching memory have been systematically investigated for the first time in bioorganic‐based resistive switching memory. C60 with different concentrations (0–7 wt%) is dispersed in polymannose precursor, drop‐casted on ITO/PET substrate, and dried to form a thin film. Electrochemically inert Au–Pd is used as top electrode. The devices with embedded C60 show better endurance and stability. Read memory window decreases and ON/OFF ratio increases as the concentration of C60 increases. Stable retention time up to 10 years is achieved for all of the devices except the one with 7 wt% C60. Based on zeta potential measurement, polymannose is more negatively charged than C60. Hence, C60 functions as an effective interlock that bridges between long molecular chains of polymannose and enhances the resistive switching properties of the polymannose thin film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.