Abstract

Fully Depleted Silicon on Insulator (FDSOI) and Fin Field Effect Transistor (FinFET) are likely alternatives to traditional planar Bulk transistors for future technologies due to their respective promising ways of tackling the scalability issues with better short channel characteristics. Both these technologies are aiming in particular at regaining a better electrostatic control by the gate over the channel of the transistor. However, FDSOI is a planar MOS technology and as a result it is much more in continuity with planar Bulk as compared to the vertical FinFET transistors. The competition between these two technologies is fierce and many studies have been reported in the literature to compare these technologies in terms of speed performance, power consumption, cost, etc. However, these studies have not yet focused on their testability properties while the impact of defects on circuits implemented in FDSOI and FinFET technologies might be significantly different from the impact of similar defects in planar MOS circuit. It is therefore the objective of the paper to address this aspect. More specifically, we analyze the electrical behavior of logic gates in presence of a resistive bridging defect for these three different technologies. A particular care has been taken to design transistors and elementary gates in such a way that the comparative analysis in different technologies is meaningful. After implementing similar design in each technology, we compare the electrical behavior of the circuit with the same resistive bridging defect and we analyze both the static and dynamic impact of this defect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.