Abstract
Because of the strong correlation between the blood concentration of circulating resistin and the illness severity of septic patients, resistin has been proposed as a mediator of sepsis pathophysiology. In vitro data indicate that human resistin directly impairs neutrophil migration and intracellular bacterial killing, although the significance of these findings in vivo remain unclear. The objectives of the present study were: (1) to validate the expression of human resistin in a clinically relevant, murine model of surgical sepsis, (2) to assess how sepsis-induced changes in resistin correlate with markers of infection and organ dysfunction, and (3) to investigate whether the expression of human resistin alters immune function or disease outcomes in vivo. 107 male, C57BL/6 mice transgenic for the human resistin gene and its promoter elements (Retn+/-/-, or Retn+) were generated on a Retn-/- (mouse resistin knockout, or Rko) background. Outcomes were compared between age-matched transgenic and knockout mice. Acute sepsis was defined as the initial 24 h following cecal ligation and puncture (CLP). Physiologic and laboratory parameters correlating to the human Sequential Organ Failure Assessment (SOFA) Score were measured in mice, and innate immune cell number/function in the blood and peritoneal cavity were assessed. CLP significantly increased circulating levels of human resistin. The severity of sepsis-induced leukopenia was comparable between Retn+ and Rko mice. Resistin was associated with increased production of neutrophil reactive oxygen species, a decrease in circulating neutrophils at 6 h and an increase in peritoneal Ly6Chi monocytes at 6 h and 24 h post-sepsis. However, intraperitoneal bacterial growth, organ dysfunction and mouse survival did not differ with resistin production in septic mice. Ex vivo resistin-induced impairment of neutrophil function do not appear to translate to increased sepsis severity or poorer outcomes in vivo following CLP.
Highlights
Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; we enable the publication of all of the content of peer review and author responses alongside final, published articles
Physiologic and laboratory parameters correlating to the human Sequential Organ Failure Assessment (SOFA) Score were measured in mice, and innate immune cell number/function in the blood and peritoneal cavity were assessed
The primary goal of this study was to establish a reproducible in vivo model with which to investigate the effect of human resistin on sepsis severity and organ dysfunction
Summary
The objectives of the present study were: (1) to validate the expression of human resistin in a clinically relevant, murine model of surgical sepsis, (2) to assess how sepsis-induced changes in resistin correlate with markers of infection and organ dysfunction, and (3) to investigate whether the expression of human resistin alters immune function or disease outcomes in vivo
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have