Abstract
The western flower thrip (WFT) Frankliniella occidentalis (Pergande) is a serious agricultural pest with a wide host range which has developed resistance to several groups of insecticides. In this study, the effect of insecticide resistance on WFT host adaptability was explored by examining changes in detoxification enzyme activities and thrip development, and reproduction on preferred and less preferred host plants, eggplant Solanum melongena L. and broad bean Vicia faba L., respectively. Thrips were screened with spinetoram on kidney bean for six generations. Activities of glutathione S-transferase (GST), mixed function oxidases (MFOs), and cytochrome P450 enzyme (P450) in a resistant strain (RS) reared on broad bean were significantly higher than those in a sensitive strain (SS), and only carboxylesterase (CarE) increased in the RS when reared on eggplant, compared with the SS. Activities of the four detoxification enzymes in the RS reared on broad bean were significantly higher than in those reared-on eggplant. On broad bean, RS adult longevity was lower and developmental duration of offspring was shorter than those of the SS, but fecundity increased. On eggplant, RS fecundity was lower and developmental duration of offspring was shorter than those of the SS. In addition, fecundity was higher and developmental duration was longer in the RS reared on broad bean than in those reared-on eggplant. The results indicated that spinetoram resistance could change WFT host preference and that those changes might be associated with detoxification enzyme activities. Thus, it was hypothesized that adaptability of the RS to the less preferred host broad bean increased, whereas adaptability to the preferred host eggplant decreased.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have