Abstract

Grapevine leafroll-associated virus-2 (GLRaV-2) is an important component of the leafroll disease complex in grapevine. We have previously sequenced the GLRaV-2 genome and identified the coat protein (CP) gene. The objective of this study is to test the concept of pathogen-derived resistance against a closterovirus associated with grapevine leafroll disease. Because GLRaV-2 is capable of infecting Nicotiana benthamiana, we decided to test the concept on this herbaceous host. Thirty-seven T(0) transgenic N. benthamiana plants expressing the GLRaV-2 CP gene were regenerated following Agrobacterium-mediated transformation. Disease resistance was evaluated in greenhouse-grown T(1) and T(2) plants by mechanical inoculation with GLRaV-2. Although all the inoculated non-transgenic plants showed symptoms 2-4 weeks post inoculation, various numbers of transgenic plants (16-100%) in 14 of 20 T(1) lines tested were not infected. In these resistant plants, GLRaV-2 was not detectable by enzyme linked immunosorbent assay. Although virus resistance was confirmed in T(2) progenies, the percentage of resistant plants was generally lower (0-63%) than that of the corresponding T(1) lines (0-100%). Northern blot and nuclear run-off results showed that virus resistance in the transgenic plants was consistently associated with the low level of transgene RNA transcript suggesting a post-transcriptional gene silencing. The success of pathogen-derived resistance to GLRaV-2 in transgenic N. benthamiana plants represents the first step towards eventual control of the leafroll disease in grapevines using this strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call