Abstract
Adjuvant arthritis (AA) is an experimental model of autoimmune arthritis that can be induced in susceptible strains of rats such as inbred Lewis upon immunization with CFA. AA cannot be induced in resistant strains like Brown-Norway or in Lewis rats after recovery from arthritis. We have previously shown that resistance to AA is due to the presence of natural as well as acquired anti-heat shock protein (HSP) Abs. In this work we have studied the fine specificity of the protective anti-HSP Abs by analysis of their interaction with a panel of overlapping peptides covering the whole HSP molecule. We found that arthritis-susceptible rats lack Abs to a small number of defined epitopes of the mycobacterial HSP65. These Abs are found naturally in resistant strains and are acquired by Lewis rats after recovery from the disease. Active vaccination of Lewis rats with the protective epitopes as well as passive vaccination with these Abs induced suppression of arthritis. Incubation of murine and human mononuclear cells with the protective Abs induced secretion of IL-10. Analysis of the primary and tertiary structure of the whole Mycobacterium tuberculosis HSP65 molecule indicated that the protective epitopes are B cell epitopes with nonconserved amino acid sequences found on the outer surface of the molecule. We conclude that HSP, the Ag that contains the pathogenic T cell epitopes in AA, also contains protective B cell epitopes exposed on its surface, and that natural and acquired resistance to AA is associated with the ability to respond to these epitopes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have