Abstract
The effect of hypoxia and application of manganese, cobalt, and magnesium ions on electrical responses of the frog olfactory bulb to adequate stimulation and to direct electrical stimulation of the olfactory nerve were studied. The slow potential evoked by adequate stimulation and the associated inhibition of the afferent input of the olfactory bulb were found to be much more resistant to inhibition of synaptic transmission by all methods used than the postsynaptic components of the orthodromic response and associated postsynaptic inhibition. A slow potential was recorded even when synaptic transmission in the olfactory bulb was completely blocked by magnesium ions. It is concluded that the slow potential of the olfactory bulb and inhibition of its afferent input are nonsynaptic in nature. It is postulated that the slow potential reflects mainly depolarization of glial cells in the glomerular layer of the bulb evoked by accumulation of potassium ions. The possible mechanisms of inhibition of the afferent input are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have