Abstract

Thermochromic VO2 films were prepared by reactive DC magnetron sputtering onto heated sapphire substrates and were used to make 100-nm-thick samples that were 10 μm wide and 100 μm long. The resistance of these samples changed by a factor ∼2000 in the 50 < Ts < 70 °C range of temperature Ts around the “critical” temperature Tc between a low-temperature semiconducting phase and a high-temperature metallic-like phase of VO2. Power density spectra S(f) were extracted for resistance noise around Tc and demonstrated unambiguous 1/f behavior. Data on S(10 Hz)/Rs2 scaled as Rsx, where Rs is sample resistance; the noise exponent x was −2.6 for Ts < Tc and +2.6 for Ts > Tc. These exponents can be reconciled with the Pennetta–Trefán–Reggiani theory [Pennetta et al., Phys. Rev. Lett. 85, 5238 (2000)] for lattice percolation with switching disorder ensuing from random defect generation and healing in steady state. Our work hence highlights the dynamic features of the percolating semiconducting and metallic-like regions around Tc in thermochromic VO2 films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.