Abstract
Phase change materials, which has been focused on the non-volatile memory field, show the possibility to carry out data storage and computing in the same physical location. However, the resistance drift behavior of phase change memory has been a huge barrier not only to traditional binary memory application for a long time, but to multi-level storage and therefore the neural network computing. Here, a bipolar programming scheme is exploited to achieve drift-reduced intermediate states and convolutional neural network (CNN) computations in Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Sb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Te <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> (GST) based memory cells. Experiments show that the resistance drift phenomena under bipolar programming have been reduced. Furthermore, the impact of bipolar operation on CNN for inference is investigated. This work provides effective means for implementing phase change neuromorphic processor with enhanced stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.