Abstract

Resistance profiles along as-grown GaAs nanowires were measured with a multi-tip scanning tunneling microscope used as a nanoprober. The nanowires were grown in the vapor-liquid-solid growth mode in a two-temperature-step mode and doped with Zn. Using a transport model, the resistance profile was converted to a dopant profile. The dopant distribution along the nanowires was found to correlate with the temperature during different phases of nanowire growth. The nanowire base grown at higher temperature exhibits a decreased dopant concentration. Mechanical stress by intentional bending of a nanowire was shown not to influence nanowire conductance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.