Abstract

A general methodology for assigning the configuration of chiral mono- and polyfunctional compounds by NMR is presented. The approach is based on the use of polystyrene-bound chiral derivatizing agents (CDA-resins) specifically designed to achieve the high-yield formation of the covalent linkages (amide or ester bonds) between the substrate and the chiral auxiliary within the NMR tube, without the need for other manipulations, on a microscale level and in a short time. The deuterated NMR solvents (CDCl3, CD3CN, CS2/CD2Cl2) are also the reaction solvents and separations, purifications or workups of any kind are not necessary prior to recording the spectra. The CDA-resins prepared included MPA, 9-AMA, BPG, MTPA, and 2-NTBA as auxiliary agents incorporated either as single enantiomers or as mixed combinations of the (R)- and the (S)-enantiomers at unequal and known ratios. The high versatility of these systems was successfully demonstrated in a variety of ways based on double and single derivatization, low temperature experiments, or the formation of metal complexes. The approach allowed the absolute configurations of chiral primary amines, primary and secondary alcohols, cyanohydrins, thiols, diols, triols, and amino alcohols to be determined. Extensive high-resolution magic angle spinning (HR-MAS) NMR experiments allowed the characterization of the new CDA-resins and enabled the study of their stability and regioselectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.