Abstract

This paper addresses the issue of resilient control in the presence of denial-of-service (DoS) attacks for a class of cyber-physical systems. The primary objective is to design a static output feedback controller and event-triggered condition simultaneously such that the globally exponential stability of the closed-loop system is ensured. Compared with stepwise techniques, the co-design achieves the trade-off between control performance and communication cost. The control co-design process is formulated as a bilinear matrix inequality (BMI) problem, which involves nonlinear terms. A successive convex optimization approach is proposed to solve the BMI problem. Further, we develop a self-triggered communication scheme to reduce the cost caused by continuous event detection. It is shown that the proposed event/self-triggered strategy is Zeno-free and excludes singular triggering. Finally, a numerical example is presented to demonstrate the validity of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call