Abstract

Integrated crop–livestock systems are a form of sustainable intensification of agriculture that rely on synergistic relationships between plant and animal system elements to bolster critical agroecosystem processes, with potential impacts on resilience to weather anomalies. We simulated productivity dynamics in an integrated cover crop grazing agroecosystem typical of southern Brazil to gain a better understanding of the impacts of livestock integration on system performance, including future productivity and resilience under climate change. Long-term historical simulations in APSIM showed that the integrated system resulted in greater system-wide productivity than a specialized control system in 77% of simulated years. Although soybean yields were typically lower in the integrated system, the additional forage and livestock production increased total system outputs. Under simulated future climate conditions [representative concentration pathway 8.5 (RCP8.5) scenario from 2020 to 2060], integrated system productivity exceeded specialized system productivity in 95% of years despite declines in average soybean yield and aboveground cover crop biomass production. While the integrated system provided a productivity buffer against chronic climate stress, its resilience to annual weather anomalies depended on disturbance type and timing. This study demonstrates the utility of process-based models for exploring biophysical proxies for resilience, as well as the potential advantages of livestock integration into cropland as a sustainable intensification strategy.

Highlights

  • IntroductionSustainable intensification of agriculture aims to increase resource-use efficiency and limit expansion of agricultural land area in part by leveraging ecosystem services (e.g., soil structure, nutrient cycling, rangeland restoration) and harnessing ecosystem resilience mechanisms such as soil carbon accrual (Sanderson et al, 2013)

  • Sustainable intensification of agriculture aims to increase resource-use efficiency and limit expansion of agricultural land area in part by leveraging ecosystem services and harnessing ecosystem resilience mechanisms such as soil carbon accrual (Sanderson et al, 2013)

  • Using process-based model simulations to represent an annually grazed cover crop rotation with soybeans typical of southern Brazil, we showed that livestock integration with best management practices resulted in higher field-level productivity and resilience to chronic climate stress compared to a similar specialized system

Read more

Summary

Introduction

Sustainable intensification of agriculture aims to increase resource-use efficiency and limit expansion of agricultural land area in part by leveraging ecosystem services (e.g., soil structure, nutrient cycling, rangeland restoration) and harnessing ecosystem resilience mechanisms such as soil carbon accrual (Sanderson et al, 2013). Farms and agricultural landscapes are coupled social–ecological systems that require holistic assessment of resilience at multiple scales and across domains, development of simplified, biophysical proxies of resilience and adaptive capacity (i.e., the ability to maintain function by changing in response to disturbance) represent crucial attempts to make the concept of resilience operational for intensive production systems. These proxies provide a bridge to better understanding the underlying mechanisms of resilience in these systems to guide planning and management

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call