Abstract

The cyber-physical deep coupling makes power systems face more risks under small-probability and high-risk typhoon disasters. Resilience describes the ability of cyber-physical power system (CPPS) withstanding extreme disasters and resuming normal operation. To improve the resilience assessment and analysis method of CPPS, first, a CPPS resilience assessment framework that considers the space-time metrics of disasters and the interactions of information systems and power grids is proposed, including fault scenarios extraction, response and recovery analysis, quantitative assessment of resilience. Second, from the perspective of the geographical coupling between OPGW and transmission lines and the control coupling between automatic generation control system (AGC), substation automation system (SAS) and power system, the interaction of information flow and energy flow during the failure period is analyzed. The network flow theory is used to establish an information network traffic model to describe the operating status of the information system at each stage. On this basis, a mixed integer linear programming model for DC optimal power flow considering the information network constraints and a multi-stage bi-level model for cyber-physical collaborative recovery are established. Finally, we take the IEEERTS-79 system as an example to show that the proposed method can improve the quantization accuracy comparing with the assessment method of the conventional power system, and evaluate the enhancement of typical measures at different stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call