Abstract
Oxygen is an integral component of proteins but remains sparsely studied because its only NMR active isotope, 17O, has low sensitivity, low resolution, and large quadrupolar couplings. These issues are addressed here with efficient isotopic labeling, high magnetic fields, fast sample spinning, and 1H detection in conjunction with multidimensional experiments to observe oxygen sites specific to each amino acid residue. Notably, cross-polarization at high sample spinning frequencies provides efficient 13C ↔ 17O polarization transfer. The use of 17O for initial polarization is found to provide better sensitivity per unit time compared to 1H. Sharp isotropic 17O peaks are obtained by using a low-power multiple-quantum sequence, which in turn allows extraction of quadrupolar parameters for each oxygen site. Finally, the potential to determine sequential assignments and long-range distance restraints is demonstrated by using 3D 1H/13C/17O experiments, suggesting that such methods can become an essential tool for biomolecular structure determination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.