Abstract

We describe solid-state NMR homonuclear recoupling experiments at high magic-angle spinning (MAS) frequencies using the radio frequency-driven recoupling (RFDR) scheme. The effect of heteronuclear decoupling interference during RFDR recoupling at high spinning frequencies is investigated experimentally and via numerical simulations, resulting in the identification of optimal decoupling conditions. The effects of MAS frequency, RF field amplitude, bandwidth, and chemical shift offsets are examined. Most significantly, it is shown that broadband homonuclear correlation spectra can be efficiently obtained using RFDR without decoupling during the mixing period in fully protonated samples, thus considerably reducing the rf power requirements for acquisition of (13)C-(13)C correlation spectra. The utility of RFDR sans decoupling is demonstrated with broadband correlation spectra of a peptide and a model protein at high MAS frequencies and high magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call