Abstract

Abstract When an algebraic logic based on a poset instead of a lattice is investigated then there is a natural problem how to introduce implication to be everywhere defined and satisfying (left) adjointness with conjunction. We have already studied this problem for the logic of quantum mechanics which is based on an orthomodular poset or the logic of quantum effects based on a so-called effect algebra which is only partial and need not be lattice-ordered. For this, we introduced the so-called operator residuation where the values of implication and conjunction need not be elements of the underlying poset, but only certain subsets of it. However, this approach can be generalized for posets satisfying more general conditions. If these posets are even finite, we can focus on maximal or minimal elements of the corresponding subsets and the formulas for the mentioned operators can be essentially simplified. This is shown in the present paper where all theorems are explained by corresponding examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.