Abstract

In a 1981 paper, Duffus and Rival define an order variety as a class of posets that is closed under the formation of products and retracts. They also introduce the notion of an irreducible poset. In the present paper we define nonextendible colored posets and certain minimal nonextendible colored posets that we call zigzags. We characterize via nonextendible colored posets the order varieties generated by a set of posets. If the generating set contains only finite posets our characterization is via zigzags. By using these theorems we give a characterization of finite irreducible posets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.