Abstract
AbstractResidual torsion-free nilpotence has proved to be an important property for knot groups with applications to bi-orderability and ribbon concordance. Mayland proposed a strategy to show that a two-bridge knot group has a commutator subgroup which is a union of an ascending chain of para-free groups. This paper proves Mayland’s assertion and expands the result to the subgroups of two-bridge link groups that correspond to the kernels of maps to $\mathbb{Z}$ . We call these kernels the Alexander subgroups of the links. As a result, we show the bi-orderability of a large family of two-bridge link groups. This proof makes use of a modified version of a graph-theoretic construction of Hirasawa and Murasugi in order to understand the structure of the Alexander subgroup for a two-bridge link group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.