Abstract

Growth models allow for the study of within-person change and between-person differences in within-person change. Typically, these models are applied to continuous variables where the residuals are assumed to be normally distributed. With normally distributed residuals there are a variety of residual structures that can be imposed and tested, which have been shown to affect model fit and parameter estimation. This article concerns residual structures in growth models with binary and ordered categorical outcomes using the probit link function. Different residual structures and their appropriateness for growth data are discussed and their use is illustrated with longitudinal data collected as part of Head Start’s Family and Child Experiences Survey 1997 Cohort. We close with recommendations for the specification and parameterization of growth models that use the probit link.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.