Abstract

Latent growth modeling allows social behavioral researchers to investigate within-person change and between-person differences in within-person change. Typically, conventional latent growth curve models are applied to continuous variables, where the residuals are assumed to be normally distributed, whereas categorical variables (i.e., binary and ordinal variables), which do not hold to normal distribution assumptions, have rarely been used. This article describes the latent growth curve model with categorical variables, and illustrates applications using Mplus software that are applicable to social behavioral research. The illustrations use marital instability data from the Iowa Youth and Family Project. We close with recommendations for the specification and parameterization of growth models that use both logit and probit link functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.