Abstract
Residual stresses produced in polycrystalline CBN abrasive grits during a high-frequency induction brazing process are calculated by using finite element analysis, with a consideration of the nonuniform temperature distribution in the induction brazing model. The influences of induction brazing parameters on the residual stresses of polycrystalline CBN abrasive grits have been analyzed, including the embedding depth, grit side length, etc. Results obtained show that the tensile stress with a 40% embedding depth is 292 MPa, which is the minimum on the bonding interface compared with other embedding depths. Meanwhile, the maximum tensile stress is 575 MPa, with an increase of 59% compared with that of a grit side length of 50 mm. Finally, the simulation results of the brazing residual stress of polycrystalline CBN abrasive grits have been confirmed valid based on the residual stress measurement of the brazed monocrystalline CBN grit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.