Abstract

Ultra-high-strength steel (UHSS) with a nominal yield stress of 960 MPa is of significant interest for the design of heavily loaded compressive members, such as high-rise buildings, long-span bridges and large-scale infrastructure. However, the residual stresses induced by the fabrication process can be detrimental to the structural members. In particular, compressive residual stresses can result in premature buckling and the ultimate strength of fabricated columns will be reduced. To date, research pertaining to the distribution of the residual stresses for UHSS column is limited. An experimental program about the measurements of residual stress distributions for UHSS box and I-shaped columns is therefore presented herein. Measurements of residual stress were undertaken on two box and two I-shaped columns having various width-to-thickness ratios by using the non-destructive neutron diffraction method. The distributions of residual stress in three orthogonal directions for each specimen was measured. The influences of column width-to-thickness ratio on residual stress distributions were investigated and discussed. In addition, simplified analytical models for the box and I-shaped column were established to facilitate the buckling analysis for such UHSS columns. Comparisons of the residual stress distributions between the experimental results and analytical model demonstrated a good agreement and this model can be safely used for the fabricated high-strength-steel (HSS) and UHSS column.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.