Abstract
Residual stress measurements are notably affected by a high sensitivity to errors in input data. Measurements should then be presented together with an estimation of their accuracy. A common strategy is to carry out more measurements and/or to compare the results of different techniques. However, error contributions due to biases could be dangerously left unseen. In a previous work, the authors presented a calibration bench which can impose a known bending stress distribution on a specimen while simultaneously performing X-Ray Diffraction (XRD) or Hole-Drilling Method (HDM) residual stress measurements. Since the external load can freely be applied and removed, the superposition principle can be exploited to simultaneously identify either the reference bending stress distribution or the actual residual stress distribution, with the same experimental setup. A deep rolling treatment was measured and analyzed on the calibration bench with both XRD and HDM. First, residual stresses on the surface were evaluated with XRD measurements, then electrochemical material removal was performed to investigate stresses at higher depths. After that, HDM measurements were carried out and compared with the results of XRD. Both methods were also used to identify the known bending stresses, providing an additional validation of the residual stress results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.