Abstract

During the production of torsion bars, two different mechanical processes of inducing the residual stresses into the torsion bar are used: the presetting of the torsion bar and the deep rolling of the torsion bar. The process of presetting the torsion bar is carried out by twisting the torsion bar to the desired angle and releasing it to the new residual angle position. With controlled overstraining, favorable residual shear stresses are induced into the torsion bar, so the material is strain hardened and the yield point of the material is shifted and increased in the stress and strain space. The objective of the deep rolling process is to introduce compressive residual stresses into near-surface regions in order to increase the fatigue strength of the torsion bar. These two processes influence each other. The final level of residual stresses depends on the production sequence of these two processes and the production parameters of each process. The correct production sequence of these two operations and distribution of beneficial residual stress was simulated using the finite element (FE) method. To validate this model, the predicted surface residual stresses were compared by the X-ray diffraction (XRD) measurements of residual stresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.