Abstract

Residual stresses were calculated from the curvature of coating-substrate coupons using three different models: a simple two-beam elastic model, the Tsui–Clyne progressive deposition model, and the Tsui–Clyne progressive deposition model with substrate plasticity. The coatings studied were metallic and prepared by high-velocity oxy-fuel (HVOF) thermal spraying. The calculated stresses were compared to those measured on the same coupons using X-ray diffraction (XRD) techniques. Coating surface stresses calculated using the two-beam elastic model disagreed with those measured using XRD for coupons with significant curvature. Trends in residual stresses (with varying coating and substrate thickness, substrate material, and HVOF spray particle velocity) predicted by the elastic and elastic-plastic versions of the Tsui–Clyne progressive deposition model agreed with the trends measured by XRD. The magnitudes of stresses calculated using the Tsui–Clyne model agreed with the XRD measurements for coatings sprayed at low particle velocities but were significantly more compressive for coatings sprayed at higher velocities. Accounting for substrate plasticity in the Tsui–Clyne model improved the agreement with the XRD results, but only slightly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.