Abstract

Continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility and crop productivity. One strategy to increase crop productivity under rice–wheat system is balanced application of crop nutrients. Field experiment was conducted to assess the impact of phosphorus (0, 40, 80, 120 kg P ha−1) and zinc (0, 5, 10, 15 kg Zn ha−1) on the productivity of rice genotypes (fine and coarse) and their residual effects on the grain yield (GY) and its components (YC) of the succeeding wheat crop under rice–wheat cropping system (RWCS) in North Western Pakistan during 2011–12 and 2012–13. After rice harvest in both years, wheat variety “Siren-2010” was grown on the same layout but no additional P, K and Zn was applied to wheat crop in each year. The GY and YC of wheat significantly increased in the treatments receiving the higher P levels (120 > 80 > 40 > 0 kg P ha−1) and Zn (15 > 10 > 5 > 0 kg Zn ha−1) in the previous rice crop. The residual soil P and Zn contents after rice harvest, GY and YC of wheat increased significantly under low yielding fine genotype (B-385) as compared to the high yielding coarse genotypes (F-Malakand and Pukhraj). The residual soil P and Zn, GY and of wheat increased significantly in the second year as compared with the first year of experiment. These results confirmed strong carry over effects of both P and Zn applied to the previous rice crop on the subsequent wheat crop under RWCS.

Highlights

  • The rice–wheat cropping system (RWCS) has been in practice in Asia for more than 1000 years

  • Yield and yield components of wheat Number of spikes m−2, grains spike−1, thousand grains weight and grain yield was significantly affected by residual P and Zn levels, P × Zn, and preceding rice genotypes (Table 1)

  • Highest number of spikes m−2 (290) were produced by wheat with higher residual soil P, while minimum spikes m−2 (226) were recorded with low residual soil under P

Read more

Summary

Introduction

The rice–wheat cropping system (RWCS) has been in practice in Asia for more than 1000 years. The RWCS covers 13.5 million ha in South Asia: India (10.0), Pakistan (2.2), Bangladesh (0.8) and Nepal (0.5). It represents 32 % of the total rice area and 42 % of the total wheat area in these countries. The major cause of low yield under RWCS is nutrients depletion from the soil (Dawe 2000; Shah et al 2011). The continuous RWCS for several decades has resulted in nutrients depletion and decline in yields (Zia et al 1996; Hobbs and Morris 1996; Dawe 2000; Duxbury 2000; Shah et al 2011)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.