Abstract

Abstract The residual effect of nitrogen (N) fertilizers on subsequent crops might affect N efficiency and soil microorganisms, but little is known about the underlying reasons. Our goal was to elucidate the origin of the residual effect of synthetic N fertilizers, with and without a nitrification inhibitor, in three field experiments located in different regions of Spain that shared a common design in a maize (Zea mays L.) /wheat (Triticum aestivum L.) rotation. Maize was fertilized with ammonium sulphate nitrate (ASN) or with ASN blended with 3,4 dimethylpyrazole phosphate (DMPP) (ASN + DMPP) or was not fertilized with N. Wheat after maize received the recommended N dose, a low N dose or no N application. Yield and N content were determined for each crop and treatment and soil samples were taken to determine non-exchangeable NH4+ as well as C and N in the microbial biomass. DNA extraction was conducted in soil samples at different times. In the two locations where a residual effect occurred as a result of fertilizer application on the previous crop, either as ASN or ASN + DMPP, the C retained in the microbial biomass increased. The abundance of bacterial and archaeal communities was related to the soil’s C biomass, and the quantitative PCR approach was a more sensitive biomarker of the microbial activity than C and N in the microbial biomass. The residual effect was associated with a temporal increase of soil microorganisms caused by fertilizer application. Optical sensors identified the residual effect, opening the opportunity for adjusting the fertilizer rate to actual crop requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.