Abstract
Real-time or pre-symptomatic wheat scab (WS) detection is inevitable for precision agriculture to secure yield and quality at the critical grain formation stage. For this, feature selection (FS) techniques and machine learning (ML) have demonstrated their capabilities. However, for the same type and size of dataset, all FS and ML techniques behave differently due to their diverse primary constituents. This study attempts to leverage ML for WS classification and prediction employing different FS techniques on hyperspectral data of wheat spikes. The spectral features were selected and assessed to regress and classify disease occurrence. Relief-F-neural net (NN) manifested the best results with classification accuracy (CA) of 67 % and 89 % at the pre-symptomatic scale and 3 days after inoculation (DAI), respectively. Followed by continuous wavelet transform (CWT)-NN with 63 % CA at the pre-symptomatic scale and CWT-Xgboost with 89 % CA at 3DAI. For prediction, random forest regression revealed best accuracy of R2 = 0.94 and RMSE = 7.70, followed by partial least squares regression with R2 = 0.90 and RMSE = 10.37. The results offer a precise quantitative benchmark for future investigations into the capacity of hyperspectral data and FS for the real-time quantification of plant diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.