Abstract

A field experiment was conducted to examine the residual influence of biochar applied previously to an established experiment at the Agriculture University Research Farm, Peshawar on soil properties and yield of maize crop during summer 2016. The experiment was established in RCB design with split plot arrangements having cropping systems (CS) in main plots and biochar (BC) in sub-plots. Cropping systems were: 1) wheat-mung bean; 2) wheat-maize; 3) chickpea-maize; and 4) chickpea-mung bean. During the past three seasons, each cropping system received biochar at 0, 40, 60 and 80 t&#183ha&#451 along with recommended dose of NPK in each season. For this study, maize was planted after chickpea and wheat in summer 2016. The results showed that grain yield, cobs weight and total N uptake of maize was significantly greater for chickpea-maize than for wheat-maize cropping system. Soil organic C was also significantly higher in soil under chickpea-maize than under wheat-maize cropping system. However, other yield components such as stover yield, harvest index and N concentration in grain and stover of maize and soil properties such as pH, EC and mineral N were non-significantly affected by cropping systems. With respect to residual effect of biochar grain yield of maize and bulk density of soil were maximum for treatment receiving biochar at 40 t&#183ha&#451 whereas cobs weight soil pH and mineral N were highest receiving biochar at 60 t&#183ha&#451. Moreover, N concentration in stover, N uptake and soil organic C were maximum for treatment receiving biochar at 80 t&#183ha&#451. However, stover yield, harvest index, N concentration in grain, and soil EC were non-significantly affected by biochar treatments. However interactions between CS × BC were significant for yield and yield parameters of maize and for soil properties (bulk density mineral N), while non-significant for harvest index, soil organic C, pH and EC. It was concluded that chickpea-maize cropping system performed better in terms of improving yield and yield components of maize and in improving soil properties. Application of biochar to previous crops also improved yield and yield parameters of the following maize as well as soil properties. Thus we recommend that legumes must be involved in cropping system for sustainable and higher productivity and improved soil properties. However, further studies are suggested to find out suitable dose of biochar for sustainable and economic crop productivity and soil fertility.

Highlights

  • Maize (Zea mays L.) is a versatile as well as complete cereal crop proving food for human being and feed for animals as well as different raw materials for industries [1]

  • The effect of cropping system was not significant yet maximum number of plants (63,512 ha−1) was obtained for chickpea/maize cropping system which was statistically similar to wheat/maize cropping system

  • The maximum plant numbers of 65,714 ha−1 was noticed with the application of 80 t∙ha−1 biochar which was statistically similar to other treatments

Read more

Summary

Introduction

Maize (Zea mays L.) is a versatile as well as complete cereal crop proving food for human being and feed for animals as well as different raw materials for industries [1]. Maize is the 3rd important cereal crop in Pakistan. In Khyber Pakhtunkhwa, maize is the 2nd important cereal crop after wheat [2]. The area under maize in Pakistan is 1.1 m ha with a total production of 4.5 million metric tons [3] whereas Khyber Pakhtunkhwa contributes 56 percent to the total area and 63 percent to the total production of maize. A number of factors are responsible for low production of maize in Pakistan. One of most important limiting factor is soil’s low fertility. One way of increasing soil fertility on sustainable basis is the use of biochar

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.