Abstract

This paper presents the results of irrigated rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residues retention, fertilizer N and legumes in crop rotation on yield of maize ( Zea mays L .) and soil organic fertility. Chickpea ( Cicer arietinum L) and wheat ( Triticum aestivum L) were grown in the winters and mungbean ( Vigna radiata) and maize in the summers. Immediately after grain harvest, above-ground residues of all crops were either completely removed (−residue), or spread across the plots and incorporated by chisel plough by disc harrow and rotavator (+residue). Fertlizer N rates were nil or 120 kg ha −1 for wheat and nil or 160 kg ha −1 for maize. Our results indicated that post-harvest incorporation of crop residues significantly ( p < 0.05) increased the grain and stover yields of maize during both 2000 and 2001. On average, grain yield was increased by 23.7% and stover yield by 26.7% due to residue incorporation. Residue retention also enhanced N uptake by 28.3% in grain and 45.1% in stover of maize. The soil N fertility was improved by 29.2% due to residue retention. The maize grain and stover yields also responded significantly to the previous legume (chickpea) compared with the previous cereal (wheat) treatment. The legume treatment boosted grain yield of maize by 112% and stover yield by 133% with 64.4% increase in soil N fertility. Similarly, fertilizer N applied to previous wheat showed considerable carry over effect on grain (8.9%) and stover (40.7%) yields of the following maize. Application of fertilizer N to current maize substantially increased grain yield of maize by 110%, stover yield by 167% and soil N fertility by 9.8% over the nil N fertilizer treatment. We concluded from these experiments that returning of crop residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping systems and enhances crop productivity through additional N and other benefits in low N soils. The farmers who traditionally remove residues for fodder and fuel will require demonstration of the relative benefits of residues return to soil for sustainable crop productivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call