Abstract

We investigated the residual defects in low-dose (1013cm−2) arsenic implanted Si after high-temperature (1100°C) annealing. The presence of residual damage was successfully revealed after using a rapid thermal process for heat treatment. This damage was identified as vacancy-type defects distributed near the surface, such as tetravacancies or pentavacancies. When O2 gas was introduced to the annealing chamber, vacancy-type defects were transformed into divacancy and carbon–oxygen complex. They were confirmed to be created by a non-equilibrium reaction during the rapid cooling-down step in the annealing sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.