Abstract
Recently the Convolutional Recurrent Neural Network (CRNN) architecture has shown success in many string recognition tasks and residual connections are applied to most network architectures. In this paper, we embrace these observations and present a new string recognition model named Residual Convolutional Recurrent Neural Network (Residual CRNN, or Res-CRNN) based on CRNN and residual connections. We add residual connections to convolutional layers as well as recurrent layers in CRNN. With residual connections, the proposed method extracts more efficient image features and make better predictions than ordinary CRNN. We apply this new model to handwritten digit string recognition task (HDSR) and obtain significant improvements on HDSR benchmarks ORAND-CAR-A and ORAND-CAR-B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.