Abstract
PurposeIn continuous manufacturing (CM), the material traceability and process dynamics can be investigated by residence time distribution (RTD). Many of the unit operations used in the pharma industry were characterized by dead time–dominated RTD. Even though feasible and proper feedback control is one of the many advantages of CM, its application is challenging in these cases. This study aims to develop a feedback control, implementing the RTD in a Smith predictor control structure in a continuous powder blender line.MethodsContinuous powder blending was investigated with near-infrared spectroscopy (NIR), and the blending was controlled through a volumetric feeder. A MATLAB GUI was developed to calculate and control the concentration of the API based on the chemometric evaluation of the spectra. The programmed GUI changed the feeding rate based on the proportional integral derivative (PID) and the Smith predictor, which implemented the RTD of the system. The control structures were compared even on a system with amplified dead time.ResultsIn this work, the control structure of the Smith control was devised by utilizing the RTD of the system. The Smith control was compared to a classic PI control structure on the normal system and on an increased dead time system. The Smith predictor was able to reduce the response time for various disturbances by up to 50%, and the dead time had a lower effect on the control.ConclusionsImplementing the RTD models in the control structure improved the process design and further expanded the wide range of applications of the RTD models. Both control structures were able to reduce the effect of disturbances on the system; however, the Smith predictor presented more reliable and faster control, with a wider space for control tuning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.