Abstract

Continuous manufacturing (CM) is an emerging technology which can improve pharmaceutical manufacturing and reduce drug product quality issues. One challenge that needs to be addressed when adopting CM technology is material traceability through the entire continuous process, which constitutes one key aspect of control strategy. Residence time distribution (RTD) plays an important role in material traceability as it characterizes the material spreading through the process. The propagation of upstream disturbances could be predictively tracked through the entire process by convolution of the disturbance and the RTD. The present study sets up the RTD-based modeling framework in a commonly used process modeling environment, gPROMS, and integrates it with existing modules and built-in tools (e.g., parameter estimation). Concentration calculations based on the convolution integral requires access to historical stream property information, which is not readily available in flowsheet modeling platforms. Thus, a novel approach is taken whereby a partial differential equation is used to propagate and store historical data as the simulation marches forward in time. Other stream properties not modeled by an RTD are determined in auxiliary modules. To illustrate the application of the framework, an integrated RTD-auxiliary model for a continuous direct compression manufacturing line was developed. An excellent agreement was found between the model predictions and experiments. The validated model was subsequently used to assess in-process control strategies for feeder and material traceability through the process. Our simulation results show that the employed modeling approach facilitates risk-based assessment of the continuous line by promoting our understanding on the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.