Abstract

The coincidence of two different presentations of Witten 3-manifold invariants is proved. One of them, invented by Reshetikhin and Turaev, is based on the surgery presentation a of 3-manifold and the representation theory of quantum groups; another one, invented by Kohno and Crane and, in slightly different language by Kontsevich, is based on a Heegaard decomposition of a 3-manifold and representations of the Teichmuller group, arising in conformal field theory. The explicit formula for the matrix elements of generators of the Teichmuller group in the space of conformal blocks in the SU(2) k, WZNW-model is given,using the Jones polynomial of certain links.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.