Abstract

The inversion of subsurface reservoir properties is of profound significance to the oil and gas energy development and utilization. The strong heterogeneity and complex pore structure of underground reservoirs pose a challenge to efficient oil and gas energy development and utilization across the world, which increases the necessity of developing an efficient reservoir properties inversion method. However, traditional model-driven methods are confronted with the challenges of strong nonlinearity and geological heterogeneity. Moreover, previous studies rarely emphasized the importance of nonlinear feature selection and transfer learning (TL). Aiming to address the research gaps, a reservoir properties inversion method was proposed by combining random forest (RF) feature selection, bidirectional temporal convolutional network (BiTCN), bidirectional gated recurrent units (BiGRU) network, multi-head attention (MHA) mechanism and TL strategy. First, the RF was used to screen the features with significant correlation with the target reservoir properties. Thereafter, combining BiTCN and BiGRU network to leverage their complementary strengths, a parallel dual branch feature learning network was constructed to learn richer geological information from logging data. Meanwhile, MHA was introduced to fuse the output features of the dual network structure. Finally, the fused features were passed through the fully connected module to output the inversion results. TL was used to associate the correlation between reservoir properties and model inversion to improve the inversion performance. The application results with actual field data showed that the proposed method was accurate and robust in reservoir properties inversion. This study can provide a new way for reliable reservoir properties inversion and promote the application of artificial intelligence in data-driven energy science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.