Abstract
Tactile feedback in the hand is essential for interaction with objects. Here, we evaluated how artificial tactile sensation affected the recognition of object properties using a myoelectrically controlled prosthetic hand. Electromyogram signals from the flexor and extensor finger muscles were used to continuously control either prosthetic joint velocity or position. Participants grasped objects of varying shape or size using the prosthetic hand. Tactile feedback was evoked by transcutaneous nerve stimulation along the participant's upper arm and modulated based on the prosthetic-object contact force. Multi-channel electrical stimulation targeted the median and ulnar nerve bundles to produce resembled tactile sensations at distinct hand regions. The results showed that participants could gauge the onset timing of tactile feedback to discern object shape and size. We also found that the position-controller led to a greater recognition accuracy of object size compared with velocity-control, potentially due to supplemental joint position information from muscle activation level. Our findings demonstrate that non-invasive tactile feedback can enable effective object shape and size recognition during prosthetic control. The evaluation of tactile feedback across myoelectric controllers can help understand the interplay between sensory and motor pathways involved in the control of assistive devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have