Abstract

Microbial geoengineering technology, as a new eco-friendly rock and soil improvement and reinforcement technology, has a wide application prospect. However, this technology still has many deficiencies and is difficult to achieve efficient curing, which has become the bottleneck of large-scale field application. This paper reviews the research status, hot spots, difficulties and future development direction microbial induced calcium carbonate precipitation (MICP) technology. The principle of solidification and the physical and mechanical properties of improved rock and soil are systematically summarized. The solidification efficiency is mainly affected by the reactant itself and the external environment. At present, the MICP technology has been preliminarily applied in the fields of soil solidification, crack repair, anti-seepage treatment, pollution repair and microbial cement. However, the technology is currently mainly limited to the laboratory level due to the difficulty of homogeneous mineralization, uneconomical reactants, short microbial activity period and large environmental interference, incidental toxicity of metabolites and poor field application. Future directions include improving the uniformity of mineralization by improving grouting methods, improving urease persistence by improving urease activity, and improving the adaptability of bacteria to the environment by optimizing bacterial species. Finally, the authors point out the economic advantages of combining soybean peptone, soybean meal and cottonseed as carbon source with phosphogypsum as calcium source to induce CaCO3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call